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Abstract-Laminar film condensation on a horizontal elliptical tube in a pure saturated vapor was analyzed 
for conditions of free and forced convection. For free convection, a simple Nusselt type analysis was used. 
For forced convection, estimation of the interfacial shear stress was made in two ways : the first used an 
asymptotic value of the shear stress under conditions of infinite condensation rate and the second was 
based on simultaneously solving the two-phase vapor boundary-layer and condensate equations. Effects 
of surface tension and pressure gradient in the condensate film were also included. For free convection, an 
elliptical tube with the major axis vertical showed an improvement of nearly 11% in the mean heat-transfer 
coefficient when compared to a circular tube of equivalent surface area. For forced convection with the 
same approamch velocity as for a circular tube, a small decrease (s 2%) in the mean heat-transfer coefficient 
resulted. However, for the same pressure drop, heat transfer performance for an elliptical tube increased 

by up to 16%. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

With the desire for smaller, less expensive shell and 
tube condensers, much effort has been devoted to 
improving the filmwise condensation mechanism on 
horizontal tubes. The majority of these studies has 
focused on passive enhancement techniques such as 
extended surfaces that improve heat transfer not only 
through an increase in the surface area to volume 
ratio, but also by utilizing surface tension to thin the 
condensate film. An alternative to this lies in the use 
of non-circular geometries, which serve to thin the 
condensate film not only through surface tension 
effects (manifested by the curvature of the surface), 
but also through an increased effect of gravity as a 
result of placing a larger proportion of the condensing 
surface in line with the vertical. 

1.1. Circular tubes 
For free convection laminar film condensation on 

vertical flat plates and circular tubes, the simple Nus- 
selt [l] theory has been found in later more complete 
studies [2,3] to be generally valid. For a circular tube, 
the mean heat-transfer coefficient can be calculated 
with good accuracy from : 

t/4 

(1) 

For forced convection laminar film condensation on 

a circular tube with vertical vapor downflow, Shek- 
riladze and Gomelauri [4] obtained numerical solu- 
tions by assuming an approximate expression for the 
vapor shear stress on the condensate film. Rose [5] 
represented these results to within 0.4% by : 

NuRe,,-‘12 = 
0.9 + 0.728F”’ 

(1+3,44@+F);31’4 
(2) 

where F is a dimensionless parameter that relates the 
relative importance of gravity to vapor shear on the 
motion of the condensate film. A better representation 
of vapor shear stress was made by Fujii et al. [6] and 
later corrected by Lee and Rose [7], where solution 
of the two-phase liquid and vapor boundary-layer 
equations was made with matching of the shear stress 
at the interface. They used an approximate integral 
solution of Truckenbrodt [8] to solve the momentum 
equation for flow over a tube with suction, slightly 
modified to agree more closely with the numerical 
solutions of Terril [9]. This analysis enables the point 
of vapor boundary-layer separation to be determined. 
Their results do not differ greatly from equation (2) 
except at low condensation rates. 

Rose [5] additionally looked at the effects of pres- 
sure gradient on the condensate film using the simpler 
Shekriladze and Gomelauri [4] assumptions. He deter- 
mined that for (p,U,‘/p,gd) > l/8, the rate of increase 
of the condensate film thickness becomes infinite at 
some angle cpC on the rear of the tube and that solu- 
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NOMENCLATURE 

ellipse semi-major axis length 
ellipse semi-minor axis length 
Bond number, p,gD,2/a 
diameter of circular tube 
effective diameter, equation (8) 
gravity function, equation (9) 
potential velocity function, equation (10) 
pressure gradient function, equation (14) 
surface tension function, equation (16) 
,@,h,glU,2MT,,, - T,.,,,,) 
specific force of gravity 
(l,]T,,,- T,,,,ll~,h,,)(p,~,lp,p,)“’ 
specific enthalpy of evaporation 
eccentricity, b/a 
condensation mass flux rate 
local Nusselt number w.r.t. D, 
mean Nusselt number w.r.t. D, 
p,h,,4pJ,(Ts,,- Tw,,) 
cylindrical coordinates 
radius of curvature, equation (6) 
two-phase Reynolds number, 
PI UcxJel~, 
vapor Reynolds Number, p,U,D,/pV 
vapor saturation temperature 
tube wall temperature 
condensate film velocity 
vapor boundary layer velocity 
tangential velocity at edge of vapor 
boundary-layer 

u, vapor free stream velocity 
x,, y, ellipse Cartesian coordinates 
X,Y curvilinear coordinates. 

Greek symbols 

: 
orientation angle 
condensate film thickness 

6* dim. film thickness, (6/DJReTp1” 
A vapor boundary-layer thickness 
A, vapor boundary-layer displacement 

thickness 
A2 vapor boundary-layer momentum 

thickness 
cp parametric angle 
K pressure gradient parameter, equation 

(34) 
KI suction parameter, equation (34) 
K, parameter, equation (34) 
a thermal conductivity 
P dynamic viscosity 
P fluid density 
0 surface tension 
z fluid shear force 
x(cp) defined by equation (7). 

Subscripts/superscripts 
6 condensate film/vapor interface 
1 condensate 
V vapor. 

tions could not be obtained beyond this point. He (equation (1)) could be used if g were replaced by 
found that the effect of pressure gradient was to gen- an effective gravity, gea given by a simple expression 
erally increase the heat transfer over the forward half similar to a weighted average gravity over the whole 
of the tube, but decrease it over the rear half. For surface. Shklover and co-workers [12, 131 analyzed a 
cases where solutions were obtained over the whole horizontal tube having a surface profile such that the 
tube (pVUL/p,gd) < l/S, inclusion of the pressure radius of curvature of the condensate always increased 
gradient led to a small decrease in the mean heat- from the top to the bottom of the tube, thereby align- 
transfer coefficient which was within 5% of equation ing more of the surface with the direction of gravity. 
(2) for all F. Krupiczka [lo] examined the effects of By maximizing use of surface tension and gravity in 
surface tension due to curvature of the condensate this way, the condensate film was significantly thin- 
film in a Nusselt type analysis on a circular tube and ned, resulting in a 2&30% increase in the mean heat- 
concluded that surface tension was only significant for transfer coefficient compared to a circular tube of 
small tubes or wires, where the rapidly changing film the same surface area. These numerical results were 
thickness could not be considered insignificant com- supported by limited experimental data. No work for 
pared to the radius of the tube, i.e. violating one of forced convection on such tubes is known to the 
Nusselt’s assumptions. authors. 

1.2. Non-circular tubes 
Limited analysis has been conducted on tubes of 

arbitrary non-circular cross-section i.e. non-elliptical. 
Dhir and Lienhard [l l] applied a simple Nusselt type 
analysis to an arbitrary plane or axisymmetric body 
in which the component of gravity varied with 
streamwise length. They determined that Nusselt’s 
expression for the mean heat-transfer coefficient 

1.2.1. Elliptica/ tubes-free convection. An elliptical 
tube, with major axis aligned with the direction of 
gravity, should provide some of the advantages 
described above. From a design and fabrication stand- 
point, elliptical tubes provide a more practical solu- 
tion than the complex tubes analyzed by Shklover and 
co-workers [ 12, 131. To date, theoretical free con- 
vection flm condensation studies on elliptical tubes 
have been analyzed using Nusselt type assumptions 
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Fig. 1. Comparison of free convection mean Nusselt number 
for circular vs elliptical tube for varying eccentricity and 

orientation angle. 

[14-181. ChengandTao [14] approximated the surface 
by several circular arcs and determined that the mean 
heat-transfer coefficient was enhanced by lO-18% in 
the practical range of eccentricitiest (k = 0.34.6) 
when compared to a circular tube with an equivalent 
surface area. 

Wang et al. [ 151 considered condensation on ellip- 
tical tubes for which the major axis is aligned at some 
angle (the orientation angle, a) to the vertical. They 
concluded that a maximum mean heat-transfer 
coefficient was obtained for the condition at which the 
orientation angle c( = O”, a result which was validated 
by limited experimental data on one elliptical tube 
with k = 0.36. Ya:ng and Chen [16] noted that the 
mean heat-transfer coefficient had been incorrectly 
determined in the work of Wang et al. [15].$ Cor- 
rection of this error by the present authors is shown 
in Fig. 1 for varying eccentricity and orientation angle 
and resulted in a 5% decrease in the mean heat-trans- 
fer coefficients compared to those reported by Wang 
et al. [15]. However, for an elliptical tube with eccen- 
tricity k = 0.36, the theoretical mean heat-transfer 

tThe eccentricity of an ellipse is defined by k = b/a where 
a and b are the radial distances in the vertical and horizontal 
directions, respective1.y. If the ellipse has its major axis verti- 
cal, then a and b are the semi-major and semi-minor axes, 
respectively. 

Sin determining the average heat-transfer coefficient over 
the surface area, Wang et al. [15] took the radial distance of 
the ellipse, r, to be constant, whereas in reality, it varies with 
streamwise length. 

§Note that Yang and Chen [16] use ellipticity (e) rather 
than eccentricity, defined as e = v/a which varies 
from 0 for a circular tube to 1 for a vertical flat plate. 
Ellipticity is only delined for an ellipse with its major axis 
vertical where k and I? are related by k = p. 

~/Referring to Fig. 2, the first error is a result of assuming 
that the differential r,treamwise length, dx is given by rdq, 
which assumes that the radial distance from the centroid of 
the ellipse is constant over the interval of the parametric 
angle, ‘p. The second error is in the expression for r, which 
should be given by : 

r = a co? rp +k2 sin2 cp. 

coefficient for 0: = 0” is still 11.3% better than that for 
an equivalent surface circular tube. Furthermore, the 
elliptical tube outperformed the circular tube for 
orientation angles up to about 50”. This may have 
important implications in an elliptical tube bundle 
where approach velocities in some parts of the bundle 
may be offset from the vertical. Wang et al. [15] also 
conducted experimental work on an ellipse of eccen- 
tricity 0.36 using R-l 1. Subtracting the 5% correction 
to their numerical solutions mentioned above, better 
agreement with their experimental data was obtained. 

Fieg and Roetzel [17] looked at the effect of axial 
inclination from the horizontal on the performance of 
elliptical tubes. They also found that for k < 1 (major 
axis in the vertical direction), the use of an elliptical 
surface increased the mean heat transfer compared to 
an equivalent surface circular tube. This increase was 
accentuated as the angle of inclination of the tube 
increased. Yang and Chen [ 16, 181 included the effects 
of surface tension on an elliptical tube due to cur- 
vature of the surface and variable wall temperature 
using a cosine distribution similar to that proposed 
by Memory and Rose [19] for a circular tube. In 
ref. [16], they concluded that surface tension had a 
negligible effect for an eccentricity8 k > 0.8. For 
k < 0.8, the effect of including surface tension was a 
small decrease in the mean heat-transfer coefficient, 
up to about 2% for k z 0.4. In ref. [18], they found 
that the variable wall temperature affected local values 
but not the mean value of the heat-transfer coefficient. 

1.2.2. Elliptical tubes-forced convection. 
Forced convection film condensation on an ellip- 

tical tube compared to a circular tube has the added 
potential advantage of a better streamlined shape 
resulting in improved vapor flow characteristics. Pan- 
day [20] developed an explicit numerical method for 
two-dimensional film condensation and applied it to 
the case of downward flowing vapor over elliptical 
tubes. Convection and inertia terms were included 
in the condensate film equations as well as pressure 
gradient and surface tension. Potential flow was 
assumed outside the vapor boundary-layer. The inter- 
facial shear stress was estimated using an asymptotic 
expression similar to that used by Shekriladze and 
Gomelauri [4] for an infinite condensation rate. How- 
ever, two errors related to the geometry of the ellipse 
were found in his analysis. 11 Correction of these errors 
by the present authors resulted in conclusions that are 
opposite to those reported by Panday [20]. At low 
vapor velocities where gravity is dominant, the mean 
heat-transfer coefficient was found to be larger than 
that of an equivalent surface area circular tube similar 
to that noted by other studies [14-161. At high vapor 
velocities, the mean heat-transfer coefficient was 
found to be lower than an equivalent surface area 
circular tube due to a reduction in vapor drag (dis- 
cussed later). The authors know of no other work 
(experimental or theoretical) for forced convection 
film condensation on an elliptical tube. 
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The present paper examines in more detail the 
effects of vapor shear, pressure gradient and surface 
tension for laminar film condensation on a single hori- 
zontal elliptical tube with its major axis aligned with 
gravity and/or with the free stream vapor flow. Inter- 
facial shear is estimated using both the simple assump- 
tion of Shekriladze and Gomelauri [4] and the more 
complex model of Fujii et al. [6] for circular tubes. 
The latter also estimates the angle at which vapor 
boundary-layer separation occurs and the effect that 
it has on the mean heat-transfer coefficient. 

2. THEORETICAL MODEL 

2.1. General considerations for an elliptical body 
Figure 2 shows an elliptical tube whose cross- 

section is oriented such that the major axis is aligned 
with the vertical. Functions relating the geometry of 
the ellipse are first given in a Cartesian coordinate 
system (x,, y,) whose center coincides with the cen- 
troid of the ellipse. These are then transformed into a 
cylindrical coordinate system (r, 0) where r is the 
radial distance from the centroid to a point on the 
ellipse surface at angle 0 measured from the upper 
semi-major axis. However, the radial distance to a 
point on the ellipse surface is not constant with 6 and 
the streamwise length, x, is, therefore, not pro- 
portional to 0 as it would be for a circle. Consequently, 
when analyzing flow over a curved body shape other 
than a circle, it is more convenient to use curvilinear 
coordinates (rather than cylindrical coordinates), with 
x aligned along the streamwise elliptical wall surface 
and y along its normal with corresponding velocities 
u and v. 

All three coordinate systems are functions of a para- 
metric angle, rp, also measured from the upper semi- 
major axis. The parametric angle defines the elliptical 
surface such that the x, coordinate of a circle of radius 

YI 

(0. a) 

(0. W 

(b. 0) 

Fig. 2. Elliptical tube geometry and coordinate systems. 

b at angle cp translates to x, on the ellipse and the y, 
coordinate of a circle of radius a at angle cp translates 
to they, coordinate on the ellipse. When k = b/a = 1 
(circular tube), angle 0 is equal to the parametric angle 
rp. The transformation equations are then given by : 

x, = rsintl = bsincp (3) 

y, = rcos0 = acoscp. 

In Cartesian coordinates, the surface of the ellipse and 
radial distance, r, are given by : 

(x,/b)* +(yl14* = 1 (4) 

r = Jm = a cos* (p+k* sin’rp. (5) 

The radius of curvature of the elliptical surface, R(q), 
is given by : 

a 
R(q) = - [sin* cp + k* cos* q13/* 

k (6) 

when k = 1 (circular tube), both r and R(q) are equal 
to a constant (a) as expected. To transform to curvi- 
linear coordinates, consider point P on the ellipse 
shown in Fig. 2. Moving a small distance dx along the 
ellipse surface results in incremental changes of d6 
and dr. The resulting relationship between x, r and 0 is 
(dx)* = (dr)*+ (r do)*. Combining this with equations 
(3) and (5) and differentiating where necessary gives 
expressions for dr and dt? (and hence dx) as a function 
ofdp: 

where 

dx = X(q)dq (7) 

x(cp) = a/z. 

In formulating the problem, a characteristic length 
is used to non-dimensionalize the heat transfer par- 
ameters of the model. An effective diameter, D,, is 
defined as the diameter of a circular tube which has 
the same surface area as the elliptical tube, given by : 

De = f : x(cp) drp. 
s 

u-0 

The component of gravity in the streamwise direction 
is tangent to the ellipse surface. A unit vector tangent 
to the surface is defined by the slope of the surface, 
dy,/dx,. The dot product of the tangent vector and 
the gravity vector yields the streamwise gravity com- 
ponent, gX, given by : 

9x = dl (cp) (9) 

where 

fi (cp) = 
sin cp 

sin* cp + k* cos* rp 

when k = 1 (circular tube),f,(cp) = sin cp. For forced 
vapor flow over the ellipse surface, the velocity of the 
vapor influences the condensate film thickness 
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through the vapor shear at the interface. Assuming 
that both the film {and vapor boundary-layer thick- 
nesses are much smaller than the radius of curvature 
of the elliptical surface, the vapor velocity at the outer 
edge of the vapor b’oundary-layer for an ellipse with 
its major axis aligned with the vapor free stream 
velocity, U,, is given by potential theory : 

JY$l = Uoof*((P) (10) 

where U, is the oncoming vapor free stream velocity 
andf,(cp) is given by : 

f2(q) = &g&j 

when k = 1 (circular tube),f2(q) = 2 sin cp. 

2.2. Asymptotic shear stress approximation 
Consider a pure saturated vapor at temperature T,,, 

flowing downward over a horizontal elliptical tube 
(oriented as in Fig. 2) with free stream velocity U,. 
The standard Nusselt [l] assumptions (including neg- 
lecting the inertia and convection terms) are used 
except that interfacial shear due to vapor flow is not 
negligible (represented by ra) and the surface tension 
(due to curvature of the elliptical surface) and pressure 
gradient are included. 

The interfacial shear is first approximated by the 
asymptotic expression assuming an infinite con- 
densation rate, similar to that used by Shekriladze- 
Gomelauri [4] : 

zg = m(U,-u,) x mu,. (11) 

Here, it is assumed that the film velocity at the inter- 
face is negligible compared to U, (ug << U,). Subject 
only to the requirement that the boundary-layer (film) 
thickness be much s:maller than the radius of curvature 
of the wall (6 << R(cp), White [21]), a momentum bal- 
ance for an element in the condensate film in curvi- 
linear coordinates, :jhown in Fig. 3(a), gives : 

The total pressure gradient is a combination of that 
due to potential flow, pe and that due to surface 
tension, pC, given by : 

dp +a dpo 
--=dx+dx. dx 

The pressure gradient due to potential flow is given 
by: 

dp,_ d U, 
dx - +J,dx= - 2a @% (cp) (14) 

where 

Fig. 3(a). Condensate film element for mixed convection with 
pressure gradient; (b) condensate film and vapor elements 

for mixed convection. 

when k = 1 (circular tube),f,(cp) = 4 sin 2rp. The pres- 
sure due to surface tension is given by : 

0 

p” = R(q). (15) 

Assuming that 6 << R(q), the pressure gradient due to 
surface tension is then given by : 

dpc 0 Wcp) -=- 
dx --= R(V)* dx 

- $I+) (16) 

where 

k(1 -k2) sin2q 
‘(‘) = [sin2 q+k2 (70s~ ~15’~ 

X J cos2 cp + k2 sin2 rp 

k2 +i(k2 - 1)' sin’ 2~ 

when k = 1 (circular tube), f4(~) is zero since the 
curvature is constant for a circular tube. Combining 
equations (12)-( 14) and (16) results in : 

ah 
PI - +PIsfli(cp)+ 

PvUc02 

ay* 
,,hGP) + $m = 0 

(17) 

subject to the following boundary conditions : 

au 
uyDo = 0 and PI ay y=s 0 = zg = mu,. (18) 
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A mass and energy balance for the condensate film 
gives : 

(19) 

where 6 is the local thickness of the condensate film 
and m is the condensation mass flux. Using equation 
(1 l), equation (17) can be solved for the condensate 
velocity (subject to the boundary conditions given by 
equation (18)) and combined with equation (19) to 
give the following equation for the dimensionless film 
thickness, 6* : 

where 6*, F, P and Bo are dimensionless parameters 
defined by : 

F= I*, D,h,g 
Uco2& (Tsa, - TM,,) 

P= Pvh,p, 
P, 1, CT,,, - TWA 

(21) 

Due to the symmetry of the problem, the initial con- 
dition is given by : 

= 0. (22) 

With suitable values of the dimensionless parameters, 
equation (20) reduces to the analysis of Nusselt [l] 
for free convection alone, the analysis of Shekriladze 
and Gomelauri [4] for forced convection alone and 
the analysis of Rose [5] for forced convection incor- 
porating pressure gradient. Equation (20) was solved 
using a fifth-order Adams method predictor-corrector 
algorithm developed from Crandall [22]. The mean 
heat-transfer coefficient, given in dimensionless form, 
was then determined from : 

- 2 
NuReTp -112 =_ 

s 
^$AcpW+ 

n II 
(23) 

As in the study of pressure gradient by Rose [S], there 
is a condition for which dP/dq becomes infinite at 
some critical angle, rp,. Differentiating equation (20) 
results in a first-order ordinary differential equation 
for 6*. Solving for db*/drp -+ cc yields : 

+f2(0* = 0 (24) 

This condition determines cpc and is always satisfied 
at an angle which occurs before the condition for 
condensate film separation (du/drp = 0 at y = 0). With 
surface tension neglected, equation (24) reduces to 
that given by Rose [5] for a circular tube (k = 1). It 
should be noted that vapor boundary-layer separation 
is not predicted by the asymptotic shear stress 
approximation since the interfacial shear is based on 
potential flow outside the vapor boundary-layer which 
is always positive. 

2.3. Two-phase boundary-layer approximation 
As mentioned earlier, the interfacial shear stress 

expression of Shekriladze and Gomelauri [4] was 
modified by Fujii et al. [6] for a circular tube by 
simultaneously solving the boundary-layer equations 
for the condensate film and vapor, together with com- 
patibility of interfacial shear at the vapor/condensate 
interface. This method is now applied to an elliptical 
tube oriented as in Fig. 2. Since this analysis is more 
complex, pressure gradient and surface tension effects 
have been neglected-all other assumptions are the 
same as above. Elements of the condensate film and 
vapor are shown in Fig. 3(b). The equations of 
momentum, energy and continuity for the condensate 
film are derived as before (except that the momentum 
equation has no pressure gradient or surface tension 
terms), giving the following ordinary differential equa- 
tion for 6* : 

(25) 

where G and t are dimensionless parameters given 
by: 

andr 
b 

= &JRe, 
PJJ,2 

The governing equations for the vapor boundary- 
layer are given by : 

g + av = 0 
ay 

(continuity) 

Ug+ Vav= lJ?d-$+ !JL a’v. 
ay 0 pv ay2 

(momentum) 

The system of equations is subject to the following 
boundary conditions at the wall, vapor/condensate 
interface and outer edge of the vapor boundary-layer, 
respectively : 
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y=o: u=v=o 

y=6+A: U=U a; (27) 

Integrating equations (26) over the vapor boundary- 
layer thickness, A, and eliminating V yields : 

(28) 
where A, and A2 are: the displacement and momentum 
thicknesses given, respectively, by : 

(29) 

Truckenbrodt [8] developed a simplified approxi- 
mation to the solution of equation (25). Using his 
approach, equation (28) reduces to the following 
dimensionless ordinary differential equation : 

dZ _ 1 x(cp) 
dq oq D, 

0.441[1+2&,JRe,z? 

60, da _---J 
X(P) dq 

where 

V, =z, Z= Re, 2 ‘. (31) 
m 0 e 

The initial condition for equation (30) is that 
dZ/drp = 0 at cp =: 0. Compatibility at the vapor/ 
condensate interface requires that : 

.- VJigI = -g 

for the vapor boundary-layer and : 

(32) 

for the condensate film, where 

K, = 0.0681:+0.174~,; K, = ;fi; 

tFor a finite horizontal flat plate, condensate will flow 
over the edges yielding finite heat transfer [24]. 

K=De!!!EZ 
x(cp) dq . (34) 

With suitable values of the dimensionless parameters, 
equation (25) reduces to the analysis of Fujii et al. [6] 
for forced convection, as corrected by Lee and Rose 
[7]. 6* is obtained by differentiating equation (25) and 
solving simultaneously with the differential equation 
for the vapor boundary-layer (equation (30)) subject 
to the compatibility equations (33) and (34). Due to 
the stiffness of the problem, an algorithm based on 
Gear’s stiff method [23] was used. Once 6* has been 
determined, the mean heat-transfer coefficient is cal- 
culated as before from equation (23). Vapor bound- 
ary-layer separation is assumed to occur at zs < 0. 
Downstream of the separation point, the heat-transfer 
coefficient is assumed to be given by Nusselt [ 1] theory. 

3. DISCUSSION OF RESULTS 

When comparing local values of film thickness and 
heat-transfer coefficient, a dimensionless streamwise 
length, x* is used, defined as the ratio of the stre- 
amwise length, x, to the half perimeter length 
(x* = 2x/nD,). Its use provides a direct comparison 
between elliptical and circular tubes as it represents 
an equivalent surface area. The effective diameter of 
an equivalent surface area circular tube is given by 
equation (8). 

3.1. Free convection (F + co, no effect of vapor shear) 
When comparing mean heat transfer coefficients 

for an elliptical tube with those of a circular tube, 
equivalent surface areas have been used. Dimen- 
sionless mean heat-transfer coefficients have been 
obtained over a wide range of eccentricity (k) and are 
shown in Fig. 4 ; good agreement with earlier elliptical 
tube studies [15,16] is obtained. Results for the special 
cases of a circular tube (k = 1) and a vertical flat plate 
(k - 0, L = 2a), agree well with those of Nusselt [l]. 
For a horizontal flat plate (k + co), the heat-transfer 

0.1 1.0 10.0 100.0 
Eccentricity. k 

Fig. 4. Effect of eccentricity on mean Nusselt number for 
free convection. 
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Fig. 5. Effect of eccentricity on local fihn thickness: (a) free 
convection; (b) forced convection (using shear stress models 

from refs. [4] and [6]). 

coefficient approaches zero as the film thickness 
becomes intinite.t For a practical manufacturing 
range of eccentricity (0.4 < k < 0.6), it can be seen 
that the effect of placing more of the elliptical tube 
surface in the direction of gravity is to increase the 
mean heat-transfer coefficient by 7% at k = 0.6 
increasing to nearly 11% at k = 0.4. The reasons for 
this are due to the variations in local dimensionless 
film thickness as discussed below. 

For free convection (F+ co), Fig. 5(a) shows 
values of local dimensionless film thickness vs dimen- 
sionless streamwise length for two values of eccen- 
tricity, k = 1 (circular tube) and k = 0.4 (a practical 
elliptical tube). The effect of gravity thins the con- 
densate film over the front and rear portions of the 
elliptical tube compared with the circular tube, but is 
slightly thicker in the middle region. The thickness of 
the film is determined by a balance of two effects : the 
condensation rate and the condensate film velocity. 
At the top of the elliptical tube, the increased effect of 
gravity (compared with the circular tube) increases 
the condensate velocity, resulting in a thinner film. 
The thinner film, however, results in a higher con- 
densation rate, which tends to thicken the film further 
downstream. With no difference in the gravity com- 
ponent at 90”, the film for the elliptical tube is, there- 
fore, thicker in this middle region. Over the rear half 
of the elliptical tube, the reduced condensation rate 

(due to the now thicker film) and the larger gravity 
component results in a slower thickening of the con- 
densate film compared with the circular tube. 

3.2. Forced convection (F -+ 0, no effect of gravity) 
With vapor shear, the streamlined shape of an ellip- 

tical tube causes higher vapor velocities over the front 
and rear portions, but a lower vapor velocity over the 
middle region. For “pure” forced convection (F + 0), 
the effects of vapor shear on the dimensionless film 
thickness can be seen in Fig. 5(b) for eccentricities of 
1 .O (circular tube) and 0.4. For the elliptical tube, the 
larger shear stress at the top of the tube due to the 
higher vapor velocity (when compared to a circular 
tube) results in a thinner condensate film. This causes 
a higher condensation rate which, when combined 
with the lower relative vapor velocity over the middle 
section of the tube, leads to a thicker condensate film 
in this region. Over the rear portion of the elliptical 
tube, the now lower condensation rate combined with 
the higher vapor shear once again results in a thinner 
film than with a circular tube. 

Figure 5(b) shows solutions using both the asymp- 
totic (Shekriladze-Gomelauri [4]) and boundary-layer 
(Fujii et al. [6]) shear stress approximations. Both give 
very similar solutions over the front half of both tubes, 
but vary considerably over the rear half with the latter 
clearly showing the points at which the boundary- 
layer separates (discussed in more detail below). No 
separation is seen with the asymptotic (infinite con- 
densation rate) shear stress approximation, as 
expected. The effect of these local variations in film 
thickness is to reduce the mean heat-transfer 
coefficient for the elliptical tube by between l-2% for 
practical values of k (0.40.6) when compared to a 
circular tube (see Fig. 6(a) below). From studies of 
single phase flow over an elliptical tube, the drag force 
has been found to be reduced when compared to a 
circular tube [25]. This reduced interfacial drag results 
in a thicker condensate film for the ellipse and 
accounts for this small decrease in heat transfer com- 
pared to a circular tube for the same free stream 
velocity. 

3.3. Combinedfree andforced convection 
3.3.1. Asymptotic shear stress approximation [4]. 

Figure 6(a) shows the effect of eccentricity on the ratio 
of the mean heat-transfer coefficient for an elliptical 
tube and a circular tube of the same surface area : both 
free (F--f co) and forced convection (F -+ 0) using the 
asymptotic shear stress approximation [4] are shown. 
For the case of a circular tube (k = l), the solutions 
for the mean heat-transfer coefficient are within 0.4% 
of equation (2) given by Rose [S]. As F -+ m, the free 
convection solutions given in Fig. 4 are approached, 
resulting in the small increase in the mean heat transfer 
coefficient of nearly 11% as eccentricity decreases 
from 1.0 to 0.4. If tubes of eccentricity equal to 0.2 
could be feasibly manufactured, then increases of 
nearly 14% are predicted. As F 4 0, the elliptical tube 
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Fig. 6. Effect of varying eccentricity, surface tension and 
pressure gradient on the mean Nusselt number for free and 
forced convection (using shear stress model from ref. [4]: (a) 

k; (b) l/Be; (c) P. 

shows a small decrease in the mean heat transfer 
coefficient of around 2% as eccentricity decreases 
from 1.0 to 0.4. The reasons for this small decrease 
were given above in Fig. S(b). 

3.3.2. Effect of surface tension. The effect of surface 
tension has been studied separately using only the 
asymptotic shear stress approximation [4]. Only those 
cases for which a solution could be obtained over the 
whole tube are presented. Surface tension causes a 
favorable pressure ,gradient over the front half of an 
elliptical tube and an adverse pressure gradient over 
the rear half. The severity of the pressure gradient is 
localized to small regions at the top and bottom of the 
elliptical tube where the change in surface curvature is 

most severe. Consequently, it is expected that effects 
of surface tension are going to increase as k decreases. 

Figure 6(b) shows the effect of surface tension on 
the mean heat-transfer coefficient for both free and 
forced convection for ellipses of eccentricity 0.4 and 
0.8 when compared to a circular tube of similar surface 
area (k = 1). The reciprocal of the Bond number, 
l/Be, gives the relative effect of surface tension to 
inertia and is typically around 0.01 for steam and 
0.001 for refrigerants. It can be seen that the influence 
of surface tension is almost negligible for a highly 
wetting fluid such as refrigerant (lines cannot be dis- 
tinguished). Also, as eccentricity decreases, the line 
for l/Be = 0.01 lies below that for l/B0 = 0 over the 
whole range of F, indicating that inclusion of surface 
tension leads to a small decrease in the mean heat- 
transfer coefficient for steam for both free ( zz 2%) and 
forced (~0.5%) convection. This suggests that any 
thinning of the condensate film over the top half of 
the tube is more than offset by a thickening over the 
lower half. Decreasing k accentuates these decreases, 
which are more significant in the free convection 
region (where surface tension can dominate gravity) 
than in the forced convection region where film thick- 
ness remains dominated by vapor shear. 

3.3.3. Effect of pressure gradient. 
The effect of pressure gradient has also been studied 

separately using the asymptotic shear stress approxi- 
mation [4]. Again, only those cases for which a solu- 
tion could be obtained for the whole tube are 
presented. The pressure gradient included in the 
momentum equation of the condensate film (equation 
(12)) is assumed to be due to the pressure gradient 
impressed on the condensate film by vapor potential 
flow. As with surface tension, there is a favorable 
pressure gradient over the front half of an elliptical 
tube and an adverse pressure gradient over the lower 
half. The effect of decreasing eccentricity (k < 1) is to 
push the points of maximum favorable and adverse 
pressure gradient to the front and rear of the tube, 
respectively. This delays the point at which the con- 
densate film thickness becomes infinite and is a result 
of the better streamlined shape of the elliptical tube. 

With pressure gradient included, solutions agree 
with the results of Rose [5] for a circular tube (k = l), 
giving the same 5% decrease in the mean heat-transfer 
coefficient over the whole range of F when compared 
to equation (2). Using practical values of the dimen- 
sionless parameter P (0.01 < P < I), Fig. 6(c) shows 
the effect of including pressure gradient on the mean 
heat-transfer coefficient for free and forced convection 
for ellipses of eccentricity 0.4 and 0.8 when compared 
to a circular tube (k = 1) of similar surface area. For 
values of F for which solutions could be obtained for 
the whole tube, increasing P has the effect of increas- 
ing the mean heat-transfer coefficient for the ellipse 
when compared to the circular tube. This is a result 
of the more favorable potential velocity distribution 
around the ellipse. These increases are more significant 
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in the free convection region than in the forced con- 
vection region where film thickness remains domi- 
nated by vapor shear (as with surface tension). It can 
be seen from Fig. 6(c) that complete solutions could 
only be obtained for certain values of P and F, given 
by: 

when k = 1 and D, = 2a, equation (35) reduces to 
that given by Rose [5] for a circular tube. 

3.3.4. Effect of vapor pressure drop. 
It has been shown above that for an elliptical tube 

with its major axis vertical, the mean heat-transfer 
coefficient is lower than an equivalent surface circular 
tube for a fixed vertical vapor downflow (Fig. 6(a), 
low F). However, for a fixed vapor pressure drop, 
the approach velocity for an elliptical tube can be 
significantly higher than that for a circular tube. Sam- 
ple calculations using steam (T,,, = 60°C) condensing 
on a horizontal tube with T,,,, = 40°C have shown 
that for a fixed pressure drop, the approach velocities 
for a circular and an elliptical tube with k = 0.5 are 
25 and 35 m/s, respectively.? This gives a 16% higher 
mean heat transfer for an elliptical tube over a circular 
tube when using the asymptotic shear stress approxi- 
mation [4]. 

3.3.5. Two-phase boundary-layer shear stress approxi- 
mation [6]. 

Solution of the two-phase boundary-layer equa- 
tions with matched shear stress at the interface allows 
the vapor boundary-layer separation point and its 
effect on local and mean heat transfer rates to be 
determined. For a circular tube (k = l), the present 
solutions agree closely with the results of Fujii et al. 
[6] as corrected by Lee and Rose [7]. Local film thick- 
ness has already been shown in Fig. 5(b) for a circular 
and elliptical tube (k = 0.4) for forced convection 
(F + 0) and high values of G, a dimensionless par- 
ameter which is proportional to condensation rate.$ 
Both tubes exhibit a rapidly thickening condensate 
film as the separation point is approached due to the 
reduced shear effect (Q + 0). For the elliptical tube, 
however, the figure clearly indicates a delay in vapor 
boundary-layer separation due to the better stream- 
lined shape. This leads to a thinner film and a higher 
overall heat transfer rate for the elliptical tube, as 
mentioned earlier. 

In reality, the overall heat transfer rate is a com- 
plicated function of gravity (F + co), vapor shear 
(F--t 0) and delay of vapor boundary-layer separation 
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Fig. 7. Effect of eccentricity on local condensate film thick- 
ness (using shear stress model from ref. [6]: (a) F= 0.01, 
G = 0.1; (b) F= 10, G = 0.1; (c) F= 0.01, G = 5.5; (d) 

F = 10, G = 5.5. 

tin the absence of two-phase drag coefficients, single- 
phase drag coefficients of 1.2 and 0.6 have been used, respec- 
tively, for a cylinder and an elliptical tube with k = 0.5 (taken 
from White [25]). 

IPractical ranges of G are 0.1 to about 2.5 for refrigerants 
and 0.3 to about 5.5 for steam. 

(G + co, F-t 00). Figures 7 and 8 show how these 
three phenomena affect local tihn thickness and local 
heat-transfer coefficients for varying eccentricity using 
four extreme practical combinations of F and G 



Convection laminar film condensation 3405 

0.0:. ’ ’ ’ ’ 
0.0 0.2 0.4 0.6 0.8 1.0 

(c)F * 0.01. G - 5.5 

._........ k _ 0.8 

.._._.... k = 0.6 

(d) F - 10.G - 5.5 

0.0 k ’ ’ 1 

0.0 0.2 0.4 0.6 0.8 1.0 

Dhensicmlcu Streamuise Lm@b 
Fig. 8. Effect of eccentricity on local heat transfer coefficient 
(using shear stress model from ref. [6]): (a) F = 0.01, G = 0.1; 
(b) F= 10, G = 0.1; (c) F=O.Ol, G = 5.5; (d) F= 10, 

G = 5.5. 

(0.01 < F < 10; 0.1 < G < 5.5). In all four cases, the 
delay in vapor boundary-layer separation with 
decreasing k is clear. For low F and G, the separation 
point occurs relatively early and close to the position 
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Fig. 9. Effect of eccentricity and condensation rate on mean 
Nusselt number for free and forced convection (using shear 

stress model from [6]). 

obtained for single phase separation without suction. 
As F and G increase (decreasing U, and increasing 
condensation rate (suction), respectively), vapor 
boundary-layer separation is further delayed and is 
virtually eliminated at high values of both. Note that 
in Figs 7(b,c) and 8(b,c), the point of separation 
seems to cause a much more abrupt change in the 
film thickness. This is because, downstream of the 
separation point, the heat-transfer coefficient is 
assumed to be given by Nusselt [l] theory. 

Figure 9 shows how the three phenomena above 
influence the mean heat-transfer coefficient for vary- 
ing eccentricity. For free convection (high F), all solu- 
tions tend to converge to the Nusselt [l] model. For 
high condensation rates (G = 5.5), the two-phase 
shear stress approximation of Fujii et al. [6] agrees 
closely with the asymptotic shear stress approxi- 
mation of Shekriladze and Gomelauri [4] as expected. 
For all practical values of G, the effect of eccentricity 
is similar to that discussed in Fig. 6(a) above, with an 
increase in mean heat transfer (compared to a circular 
tube) at high F and a small decrease at low F. 
However, as G increases, the cross-over point from 
increase to decrease (i.e. changing from a gravity 
dominated flow to a shear dominated flow) occurs at 
ever decreasing values of F (higher U,). This appears 
to be due to the effects of vapor boundary-layer sep- 
aration. At high F and G, the separation point is 
delayed at different rates depending on eccentricity, 
increasing as k decreases, As F decreases, the sep- 
aration point moves forward only slightly due to the 
very high suction. The delayed separation for the ellip- 
tical tube results in a higher mean heat-transfer 
coefficient and thus, at high G, the flow is gravity 
dominated for a wide range of F. At low F and G, 
separation occurs close to that for single phase dry 
friction. As F increases, there is little change in this 
separation point. The reduced drag for the elliptical 
tube in the region before separation causes a reduction 
in the mean heat-transfer coefficient and thus, at low 
G, the flow is shear dominated for a wide range of F. 



3406 S. B. MEMORY et al. 

4. CONCLUSIONS 

Analyses of laminar film condensation on a hori- 
zontal elliptical tube have been conducted under con- 
ditions of free and forced convection using both 
asymptotic and two-phase boundary-layer interfacial 
shear stress approximations. For the asymptotic shear 
stress approximation, effects of surface tension and 
pressure gradient have also been independently stud- 
ied. Results have been compared to a circular tube of 
an equivalent surface area. 

For free convection, gravity provides a small 
increase in the mean heat transfer by placing more of 
the elliptical tube surface in the direction of gravity. 
For forced convection at a given free stream velocity, 
both shear stress approximations indicate a small 
decrease in mean heat transfer due to a reduction in 
the interfacial shear as a result of the better stream- 
lined shape of the elliptical tube. However, for a given 
pressure drop across each tube, the higher allowable 
vapor approach velocity for the elliptical tube results 
in an increase in the mean heat-transfer coefficient for 
both shear stress approximations. Some enhancement 
may also be due to a delay in vapor boundary-layer 
separation that occurs with the better streamlined 
body. Surface tension and pressure gradient effects on 
the mean heat-transfer coefficient are small, leading 
to a small decrease and a small increase for all F, 
respectively. 
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